Imaging of accidental contamination with F-18-solution; a quick trouble-shooting procedure

Kairemo, Kalevi and Kangasmäki, Aki (2016) Imaging of accidental contamination with F-18-solution; a quick trouble-shooting procedure. Asia Oceania Journal of Nuclear Medicine and Biology, 4 (1). pp. 51-54.

[img]
Preview
Text
AOJNMB_Volume 4_Issue 1_Pages 51-54.pdf

Download (501kB) | Preview
Official URL: http://aojnmb.mums.ac.ir/article_6159.html

Abstract

 To the best of our knowledge, imaging of accidental exposure to radioactive fluorine-18 (F-18) due to liquid spill has not been described earlier in the scientific literature. The short half-life of F-18 (t½=110 min), current radiation safety requirements, and Good Manufacturing Practice (GMP) regulations on radiopharmaceuticals have restrained the occurrence of these incidents. The possibility of investigating this type of incidents by gamma and positron imaging is also quite limited. Additionally, a quick and precise analysis of radiochemical contamination is cumbersome and sometimes challenging if the spills of radioactive materials are low in activity. Herein, we report a case of accidental F-18 contamination in a service person during a routine cyclotron maintenance procedure. During target replacement, liquid F-18 was spilled on the person responsible for the maintenance. The activities of spills were immediately measured using contamination detectors, and the photon spectrum of contaminated clothes was assessed through gamma spectroscopy. Despite protective clothing, some skin areas were contaminated, which were then thoroughly washed. Later on, these areas were imaged, using positron emission tomography (PET), and a gamma camera (including spectroscopy). Two contaminated skin areas were located on the hand (9.7 and 14.7 cm2, respectively), which showed very low activities (19.0 and 22.8 kBq respectively at the time of incident). Based on the photon spectra, F-18 was confirmed as the main present radionuclide. PET imaging demonstrated the shape of these contaminated hot spots. However, the measured activities were very low due to the use of protective clothing. With prompt action and use of proper equipments at the time of incident, minimal radionuclide activities and their locations could be thoroughly analyzed. The cumulative skin doses of the contaminated regions were calculated at 1.52 and 2.00 mSv, respectively. In the follow-up, no skin changes were observed in the contaminated areas.

Item Type: Article
Subjects: WN Radiology . Diagnostic Imaging
Divisions: Journals > Asia Oceania J Nuclear Medicine & Biology
Depositing User: AOJNMB AOJNMB
Date Deposited: 19 Sep 2017 13:30
Last Modified: 19 Sep 2017 13:30
URI: http://eprints.mums.ac.ir/id/eprint/1080

Actions (login required)

View Item View Item