Nanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake

Nourbakhsh, Mahnaz and Behravan, Javad and Lage, Hermann and Abnous, Khalil and mosaffa, Fatemeh and Badiee, Ali and R. Jaafari, Mahmoud (2015) Nanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake. Nanomedicine Journal, 2 (1). pp. 39-45.

[img]
Preview
Text
NMJ_Volume 2_Issue 1_Pages 39-45.pdf

Download (622kB) | Preview
Official URL: http://nmj.mums.ac.ir/article_3467.html

Abstract

Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA could be used in multidrug resistance reversal in cancer therapy.Materials and Methods: siRNAs were encapsulated into NLPs consisted of mPEG-DSPE/DOTAP/DOPE (10:50:40 molar ratio) by the detergent dialysis method. The particle diameters of NLPs and their surface charge were measured using dynamic light scattering. siRNA encapsulation efficiency was determined by an indirect method via filtration and free siRNA concentration determination. NLPs cytotoxicity was investigated by MTT assay. The ability of NLPs for siRNA delivery checked in two human cell lines (MCF-7/ADR and EPP85-181/RDB) by fluorescence microscopy and compared with oligofectamine.Results: NLPs containing MDR1 siRNA were prepared with the stable size of 80-90 nm and the zeta potential near to neutral. The siRNA encapsulation efficacy was more than 80. These properties are suitable for in vivo siRNA delivery. NLPs cytotoxicity studies demonstrated they were non-toxic at the doses used. NLPs improved siRNA localization in both cell lines.Conclusion: NLPs containing MDR1 siRNA can be a good candidate for in vivo siRNA delivery studies.

Item Type: Article
Subjects: QT physiology
Divisions: Journals > Nanomedicine Journal
Depositing User: nmj nmj
Date Deposited: 26 Sep 2017 16:19
Last Modified: 26 Sep 2017 16:19
URI: http://eprints.mums.ac.ir/id/eprint/4756

Actions (login required)

View Item View Item