Early Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods

Tavakoli, Meysam and Mehdizadeh, Alireza and Pourreza, Reza and Banaee, Touka and Bahreyni Toossi, Mohammad Hossein and Pourreza, Hamid Reza (2010) Early Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods. Iranian Journal of Medical Physics, 7 (4). pp. 7-14.

IJMP_Volume 7_Issue 4_Pages 7-14.pdf

Download (660kB) | Preview
Official URL: http://ijmp.mums.ac.ir/article_7240.html


Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses the automatic detection of MAs in fluorescein angiography fundus images, which plays a key role in computer assisted diagnosis of DR, a serious and frequent eye disease. Material and Methods: The algorithm can be divided into three main steps. The first step or pre-processing was for background normalization and contrast enhancement of the image. The second step aimed at detecting landmarks, i.e., all patterns possibly corresponding to vessels and the optic nerve head, which was achieved using a local radon transform. Then, MAs were extracted, which were used in the final step to automatically classify candidates into real MA and other objects. A database of 120 fluorescein angiography fundus images was used to train and test the algorithm. The algorithm was compared to manually obtained gradings of those images. Results: Sensitivity of diagnosis for DR was 94, with specificity of 75, and sensitivity of precise microaneurysm localization was 92, at an average number of 8 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using local radon transform in this algorithm eliminates the noise sensitivity for microaneurysm detection in retinal image analysis.Â

Item Type: Article
Subjects: WN Radiology . Diagnostic Imaging
Divisions: Journals > Iranian J Medical Physics
Depositing User: ijmp ijmp
Date Deposited: 27 Sep 2017 14:16
Last Modified: 27 Sep 2017 14:16
URI: http://eprints.mums.ac.ir/id/eprint/5207

Actions (login required)

View Item View Item